Essential Question
How does the graph of the linear function \(f(x) = x \) compare to the graphs of \(g(x) = f(x) + c \) and \(h(x) = f(cx) \)?

Exploration 1
Comparing Graphs of Functions

Work with a partner. The graph of \(f(x) = x \) is shown. Sketch the graph of each function, along with \(f \), on the same set of coordinate axes. Use a graphing calculator to check your results. What can you conclude?

- a. \(g(x) = x + 4 \)
- b. \(g(x) = x + 2 \)
- c. \(g(x) = x - 2 \)
- d. \(g(x) = x - 4 \)

Exploration 2
Comparing Graphs of Functions

Work with a partner. Sketch the graph of each function, along with \(f(x) = x \), on the same set of coordinate axes. Use a graphing calculator to check your results. What can you conclude?

- a. \(h(x) = \frac{1}{2}x \)
- b. \(h(x) = 2x \)
- c. \(h(x) = -\frac{1}{2}x \)
- d. \(h(x) = -2x \)

Exploration 3
Matching Functions with Their Graphs

Work with a partner. Match each function with its graph. Use a graphing calculator to check your results. Then use the results of Explorations 1 and 2 to compare the graph of \(k \) to the graph of \(f(x) = x \).

- a. \(k(x) = 2x - 4 \)
- b. \(k(x) = -2x + 2 \)
- c. \(k(x) = \frac{1}{2}x + 4 \)
- d. \(k(x) = -\frac{1}{2}x - 2 \)

Communicate Your Answer

4. How does the graph of the linear function \(f(x) = x \) compare to the graphs of \(g(x) = f(x) + c \) and \(h(x) = f(cx) \)?

Section 3.6
Transformations of Graphs of Linear Functions
145
What You Will Learn

- Translate and reflect graphs of linear functions.
- Stretch and shrink graphs of linear functions.
- Combine transformations of graphs of linear functions.

Translations and Reflections

A **family of functions** is a group of functions with similar characteristics. The most basic function in a family of functions is the **parent function**. For nonconstant linear functions, the parent function is \(f(x) = x \). The graphs of all other nonconstant linear functions are **transformations** of the graph of the parent function. A **transformation** changes the size, shape, position, or orientation of a graph.

Core Vocabulary

- family of functions, p. 146
- parent function, p. 146
- transformation, p. 146
- translation, p. 146
- reflection, p. 147
- horizontal shrink, p. 148
- horizontal stretch, p. 148
- vertical stretch, p. 148
- vertical shrink, p. 148

Core Concept

A **translation** is a transformation that shifts a graph horizontally or vertically but does not change the size, shape, or orientation of the graph.

Horizontal Translations

The graph of \(y = f(x - h) \) is a horizontal translation of the graph of \(y = f(x) \), where \(h \neq 0 \).

<table>
<thead>
<tr>
<th>(h < 0)</th>
<th>(h > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = f(x - h))</td>
<td>(y = f(x - h))</td>
</tr>
</tbody>
</table>

Subtracting \(h \) from the inputs before evaluating the function shifts the graph left when \(h < 0 \) and right when \(h > 0 \).

Vertical Translations

The graph of \(y = f(x) + k \) is a vertical translation of the graph of \(y = f(x) \), where \(k \neq 0 \).

<table>
<thead>
<tr>
<th>(k < 0)</th>
<th>(k > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = f(x) + k)</td>
<td>(y = f(x) + k)</td>
</tr>
</tbody>
</table>

Adding \(k \) to the outputs shifts the graph down when \(k < 0 \) and up when \(k > 0 \).

Example 1

Horizontal and Vertical Translations

Let \(f(x) = 2x - 1 \). Graph (a) \(g(x) = f(x) + 3 \) and (b) \(t(x) = f(x + 3) \). Describe the transformations from the graph of \(f \) to the graphs of \(g \) and \(t \).

SOLUTION

a. The function \(g \) is of the form \(y = f(x) + k \), where \(k = 3 \). So, the graph of \(g \) is a vertical translation 3 units up of the graph of \(f \).

b. The function \(t \) is of the form \(y = f(x - h) \), where \(h = -3 \). So, the graph of \(t \) is a horizontal translation 3 units left of the graph of \(f \).
A reflection is a transformation that flips a graph over a line called the line of reflection.

Reflections in the x-axis
The graph of \(y = -f(x) \) is a reflection in the x-axis of the graph of \(y = f(x) \).

Reflections in the y-axis
The graph of \(y = f(-x) \) is a reflection in the y-axis of the graph of \(y = f(x) \).

Multiplying the outputs by \(-1\) changes their signs.

Multiplying the inputs by \(-1\) changes their signs.

EXAMPLE 2 Reflections in the x-axis and the y-axis

Let \(f(x) = \frac{1}{2}x + 1 \). Graph (a) \(g(x) = -f(x) \) and (b) \(t(x) = f(-x) \). Describe the transformations from the graph of \(f \) to the graphs of \(g \) and \(t \).

SOLUTION

a. To find the outputs of \(g \), multiply the outputs of \(f \) by \(-1\). The graph of \(g \) consists of the points \((x, -f(x))\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(-f(x))</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

The graph of \(g \) is a reflection in the x-axis of the graph of \(f \).

b. To find the outputs of \(t \), multiply the inputs by \(-1\) and then evaluate \(f \). The graph of \(t \) consists of the points \((x, f(-x))\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-x)</td>
<td>2</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>(f(-x))</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The graph of \(t \) is a reflection in the y-axis of the graph of \(f \).

Monitoring Progress

Using \(f \), graph (a) \(g \) and (b) \(h \). Describe the transformations from the graph of \(f \) to the graphs of \(g \) and \(h \).

1. \(f(x) = 3x + 1; g(x) = f(x) - 2; h(x) = f(x - 2) \)
2. \(f(x) = -4x - 2; g(x) = -f(x); h(x) = f(-x) \)
Stretches and Shrinks

You can transform a function by multiplying all the x-coordinates (inputs) by the same factor a. When $a > 1$, the transformation is a **horizontal shrink** because the graph shrinks toward the y-axis. When $0 < a < 1$, the transformation is a **horizontal stretch** because the graph stretches away from the y-axis. In each case, the y-intercept stays the same.

You can also transform a function by multiplying all the y-coordinates (outputs) by the same factor a. When $a > 1$, the transformation is a **vertical stretch** because the graph stretches away from the x-axis. When $0 < a < 1$, the transformation is a **vertical shrink** because the graph shrinks toward the x-axis. In each case, the x-intercept stays the same.

STUDY TIP

The graphs of $y = f(-ax)$ and $y = -a \cdot f(x)$ represent a stretch or shrink and a reflection in the x- or y-axis of the graph of $y = f(x)$.

Core Concept

Horizontal Stretches and Shrinks

The graph of $y = f(ax)$ is a horizontal **stretch** or **shrink** by a factor of $\frac{1}{a}$ of the graph of $y = f(x)$, where $a > 0$ and $a \neq 1$.

Vertical Stretches and Shrinks

The graph of $y = a \cdot f(x)$ is a vertical **stretch** or **shrink** by a factor of a of the graph of $y = f(x)$, where $a > 0$ and $a \neq 1$.

EXAMPLE 3 Horizontal and Vertical Stretches

Let $f(x) = x - 1$. Graph (a) $g(x) = f\left(\frac{1}{3}x\right)$ and (b) $h(x) = 3f(x)$. Describe the transformations from the graph of f to the graphs of g and h.

SOLUTION

a. To find the outputs of g, multiply the inputs by $\frac{1}{3}$. Then evaluate f. The graph of g consists of the points $\left(x, f\left(\frac{1}{3}x\right)\right)$.

- The graph of g is a horizontal stretch of the graph of f by a factor of $1 + \frac{1}{3} = 3$.

b. To find the outputs of h, multiply the outputs of f by 3. The graph of h consists of the points $(x, 3f(x))$.

- The graph of h is a vertical stretch of the graph of f by a factor of 3.
EXAMPLE 4 Horizontal and Vertical Shrinks

Let \(f(x) = x + 2 \). Graph (a) \(g(x) = f(4x) \) and (b) \(h(x) = \frac{1}{4} f(x) \). Describe the transformations from the graph of \(f \) to the graphs of \(g \) and \(h \).

SOLUTION

a. To find the outputs of \(g \), multiply the inputs by 4. Then evaluate \(f \). The graph of \(g \) consists of the points \((x, f(4x))\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(4x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

The graph of \(g \) is a horizontal shrink of the graph of \(f \) by a factor of \(\frac{1}{4} \).

b. To find the outputs of \(h \), multiply the outputs of \(f \) by \(\frac{1}{4} \). The graph of \(h \) consists of the points \((x, \frac{1}{4} f(x))\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(\frac{1}{4} f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

The graph of \(h \) is a vertical shrink of the graph of \(f \) by a factor of \(\frac{1}{4} \).

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com

Using \(f \), graph (a) \(g \) and (b) \(h \). Describe the transformations from the graph of \(f \) to the graphs of \(g \) and \(h \).

3. \(f(x) = 4x - 2 \); \(g(x) = f(\frac{1}{2}x) \); \(h(x) = 2f(x) \)
4. \(f(x) = -3x + 4 \); \(g(x) = f(2x) \); \(h(x) = \frac{1}{2} f(x) \)

STUDY TIP

You can perform transformations on the graph of any function \(f \) using these steps.

Core Concept

Transformations of Graphs

The graph of \(y = a \cdot f(x - h) + k \) or the graph of \(y = f(ax - h) + k \) can be obtained from the graph of \(y = f(x) \) by performing these steps.

Step 1 Translate the graph of \(y = f(x) \) horizontally \(h \) units.

Step 2 Use \(a \) to stretch or shrink the resulting graph from Step 1.

Step 3 Reflect the resulting graph from Step 2 when \(a < 0 \).

Step 4 Translate the resulting graph from Step 3 vertically \(k \) units.
Combining Transformations

Graph \(f(x) = x \) and \(g(x) = -2x + 3 \). Describe the transformations from the graph of \(f \) to the graph of \(g \).

SOLUTION

Note that you can rewrite \(g \) as \(g(x) = -2f(x) + 3 \).

Step 1 There is no horizontal translation from the graph of \(f \) to the graph of \(g \).

Step 2 Stretch the graph of \(f \) vertically by a factor of 2 to get the graph of \(h(x) = 2x \).

Step 3 Reflect the graph of \(h \) in the \(x \)-axis to get the graph of \(r(x) = -2x \).

Step 4 Translate the graph of \(r \) vertically 3 units up to get the graph of \(g(x) = -2x + 3 \).

Solving a Real-Life Problem

A cable company charges customers $60 per month for its service, with no installation fee. The cost to a customer is represented by \(c(m) = 60m \), where \(m \) is the number of months of service. To attract new customers, the cable company reduces the monthly fee to $30 but adds an installation fee of $45. The cost to a new customer is represented by \(r(m) = 30m + 45 \), where \(m \) is the number of months of service. Describe the transformations from the graph of \(c \) to the graph of \(r \).

SOLUTION

Note that you can rewrite \(r \) as \(r(m) = \frac{1}{2}c(m) + 45 \). In this form, you can use the order of operations to get the outputs of \(r \) from the outputs of \(c \). First, multiply the outputs of \(c \) by \(\frac{1}{2} \) to get \(h(m) = 30m \). Then add 45 to the outputs of \(h \) to get \(r(m) = 30m + 45 \).

The transformations are a vertical shrink by a factor of \(\frac{1}{2} \) and then a vertical translation 45 units up.

Monitoring Progress

5. Graph \(f(x) = x \) and \(h(x) = \frac{1}{2}x - 2 \). Describe the transformations from the graph of \(f \) to the graph of \(h \).
Vocabulary and Core Concept Check

1. **WRITING** Describe the relationship between \(f(x) = x \) and all other nonconstant linear functions.

2. **VOCABULARY** Name four types of transformations. Give an example of each and describe how it affects the graph of a function.

3. **WRITING** How does the value of \(a \) in the equation \(y = f(ax) \) affect the graph of \(y = f(x) \)? How does the value of \(a \) in the equation \(y = af(x) \) affect the graph of \(y = f(x) \)?

4. **REASONING** The functions \(f \) and \(g \) are linear functions. The graph of \(g \) is a vertical shrink of the graph of \(f \). What can you say about the \(x \)-intercepts of the graphs of \(f \) and \(g \)? Is this always true? Explain.

Monitoring Progress and Modeling with Mathematics

In Exercises 5–10, use the graphs of \(f \) and \(g \) to describe the transformation from the graph of \(f \) to the graph of \(g \). (See Example 1.)

5. \[g(x) = f(x) + 2 \]

6. \[g(x) = f(x + 4) \]

7. \(f(x) = \frac{1}{2}x + 3; \ g(x) = f(x) - 3 \)

8. \(f(x) = -3x + 4; \ g(x) = f(x) + 1 \)

9. \(f(x) = -x - 2; \ g(x) = f(x + 5) \)

10. \(f(x) = \frac{1}{2}x - 5; \ g(x) = f(x - 3) \)

11. **MODELING WITH MATHEMATICS** You and a friend start biking from the same location. Your distance \(d \) (in miles) after \(t \) minutes is given by the function \(d(t) = \frac{1}{4}t \). Your friend starts biking 5 minutes after you. Your friend’s distance \(f \) is given by the function \(f(t) = d(t - 5) \). Describe the transformation from the graph of \(d \) to the graph of \(f \).

12. **MODELING WITH MATHEMATICS** The total cost \(C \) (in dollars) to cater an event with \(p \) people is given by the function \(C(p) = 18p + 50 \). The set-up fee increases by $25. The new total cost \(T \) is given by the function \(T(p) = C(p) + 25 \). Describe the transformation from the graph of \(C \) to the graph of \(T \).

Pricing

- $50 set-up fee + $18 per person

In Exercises 13–16, use the graphs of \(f \) and \(h \) to describe the transformation from the graph of \(f \) to the graph of \(h \). (See Example 2.)

13. \[f(x) = \frac{2}{3}x + 4, \quad h(x) = f(-x) \]

14. \[f(x) = -3x + 1, \quad h(x) = -f(x) \]

15. \(f(x) = -5 - x; \ h(x) = f(-x) \)

16. \(f(x) = \frac{1}{4}x - 2; \ h(x) = -f(x) \)
In Exercises 17–22, use the graphs of \(f \) and \(r \) to describe the transformation from the graph of \(f \) to the graph of \(r \).
(See Example 3.)

17. \(f(x) = \frac{3}{2}x - 1 \)
18. \(f(x) = -x \)
19. \(f(x) = -2x - 4; r(x) = f\left(\frac{1}{2}x\right) \)
20. \(f(x) = 3x + 5; r(x) = f\left(\frac{1}{3}x\right) \)
21. \(f(x) = \frac{2}{3}x + 1; r(x) = 3f(x) \)
22. \(f(x) = -\frac{1}{3}x - 2; r(x) = 4f(x) \)

In Exercises 23–28, use the graphs of \(f \) and \(h \) to describe the transformation from the graph of \(f \) to the graph of \(h \).
(See Example 4.)

23. \(h(x) = f(3x) \)
24. \(h(x) = \frac{1}{3}f(x) \)
25. \(f(x) = 3x - 12; h(x) = \frac{1}{6}f(x) \)
26. \(f(x) = -x + 1; h(x) = f(2x) \)
27. \(f(x) = -2x - 2; h(x) = f(5x) \)
28. \(f(x) = 4x + 8; h(x) = \frac{3}{4}f(x) \)

In Exercises 29–34, use the graphs of \(f \) and \(g \) to describe the transformation from the graph of \(f \) to the graph of \(g \).

29. \(f(x) = x - 2; g(x) = \frac{1}{2}f(x) \)
30. \(f(x) = -4x + 8; g(x) = -f(x) \)
31. \(f(x) = -2x - 7; g(x) = f(x - 2) \)
32. \(f(x) = 3x + 8; g(x) = f\left(\frac{1}{3}x\right) \)
33. \(f(x) = x - 6; g(x) = 6f(x) \)
34. \(f(x) = -x; g(x) = f(x) - 3 \)

In Exercises 35–38, write a function \(g \) in terms of \(f \) so that the statement is true.

35. The graph of \(g \) is a horizontal translation 2 units right of the graph of \(f \).
36. The graph of \(g \) is a reflection in the \(y \)-axis of the graph of \(f \).
37. The graph of \(g \) is a vertical stretch by a factor of 4 of the graph of \(f \).
38. The graph of \(g \) is a horizontal shrink by a factor of \(\frac{1}{3} \) of the graph of \(f \).

ERROR ANALYSIS In Exercises 39 and 40, describe and correct the error in graphing \(g \).

39.

In Exercises 41–46, graph \(f \) and \(h \). Describe the transformations from the graph of \(f \) to the graph of \(h \).
(See Example 5.)

41. \(f(x) = x; h(x) = \frac{1}{3}x + 1 \)
42. \(f(x) = x; h(x) = 4x - 2 \)
43. \(f(x) = x; h(x) = -3x - 4 \)
44. \(f(x) = x; h(x) = -\frac{1}{2}x + 3 \)
45. \(f(x) = 2x; h(x) = 6x - 5 \)
46. \(f(x) = 3x; h(x) = -3x - 7 \)
47. **MODELING WITH MATHEMATICS** The function \(t(x) = -4x + 72 \) represents the temperature from 5 P.M. to 11 P.M., where \(x \) is the number of hours after 5 P.M. The function \(d(x) = 4x + 72 \) represents the temperature from 10 A.M. to 4 P.M., where \(x \) is the number of hours after 10 A.M. Describe the transformation from the graph of \(t \) to the graph of \(d \).

48. **MODELING WITH MATHEMATICS** A school sells T-shirts to promote school spirit. The school’s profit is given by the function \(P(x) = 8x - 150 \), where \(x \) is the number of T-shirts sold. During the play-offs, the school increases the price of the T-shirts. The school’s profit during the play-offs is given by the function \(Q(x) = 16x - 200 \), where \(x \) is the number of T-shirts sold. Describe the transformations from the graph of \(P \) to the graph of \(Q \).

49. **USING STRUCTURE** The graph of \(g(x) = a \cdot f(x - b) + c \) is a transformation of the graph of the linear function \(f \). Select the word or value that makes each statement true.

<table>
<thead>
<tr>
<th>Reflection</th>
<th>Translation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection</td>
<td>Translation</td>
<td>-1</td>
</tr>
<tr>
<td>Stretch</td>
<td>Shrink</td>
<td>0</td>
</tr>
<tr>
<td>Left</td>
<td>Right</td>
<td>1</td>
</tr>
<tr>
<td>Y-axis</td>
<td>X-axis</td>
<td></td>
</tr>
</tbody>
</table>

a. The graph of \(g \) is a vertical ______ of the graph of \(f \) when \(a = 1 \), \(b = 1 \), \(c = 0 \), and \(d = 0 \).

b. The graph of \(g \) is a horizontal translation ______ of the graph of \(f \) when \(a = 1 \), \(b = 1 \), \(c = 0 \), and \(d = 0 \).

c. The graph of \(g \) is a vertical translation 1 unit up of the graph of \(f \) when \(a = 1 \), \(b = 0 \), and \(c = 0 \).

50. **USING STRUCTURE** The graph of \(h(x) = a \cdot f(bx - c) + d \) is a transformation of the graph of the linear function \(f \). Select the word or value that makes each statement true.

<table>
<thead>
<tr>
<th>Vertical</th>
<th>Horizontal</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stretch</td>
<td>Shrink</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>Y-axis</td>
<td>X-axis</td>
<td>5</td>
</tr>
</tbody>
</table>

a. The graph of \(h \) is a ______ shrink of the graph of \(f \) when \(a = \frac{1}{2} \), \(b = 1 \), \(c = 0 \), and \(d = 0 \).

b. The graph of \(h \) is a reflection in the ______ of the graph of \(f \) when \(a = 1 \), \(b = -1 \), \(c = 0 \), and \(d = 0 \).

c. The graph of \(h \) is a horizontal stretch of the graph of \(f \) by a factor of 5 when \(a = 1 \), \(b = \ ______ \), \(c = 0 \), and \(d = 0 \).

51. **ANALYZING GRAPHS** Which of the graphs are related by only a translation? Explain.

52. **ANALYZING RELATIONSHIPS** A swimming pool is filled with water by a hose at a rate of 1020 gallons per hour. The amount \(v \) (in gallons) of water in the pool after \(t \) hours is given by the function \(v(t) = 1020t \). How does the graph of \(v \) change in each situation?

a. A larger hose is found. Then the pool is filled at a rate of 1360 gallons per hour.

b. Before filling up the pool with a hose, a water truck adds 2000 gallons of water to the pool.
53. **ANALYZING RELATIONSHIPS** You have $50 to spend on fabric for a blanket. The amount m (in dollars) of money you have after buying y yards of fabric is given by the function $m(y) = -9.98y + 50$. How does the graph of m change in each situation?

a. You receive an additional $10 to spend on the fabric.

b. The fabric goes on sale, and each yard now costs $4.99.

54. **THOUGHT PROVOKING** Write a function g whose graph passes through the point $(4, 2)$ and is a transformation of the graph of $f(x) = x$.

In Exercises 55–60, graph f and g. Write g in terms of f. Describe the transformation from the graph of f to the graph of g.

55. $f(x) = 2x - 5; g(x) = 2x - 8$

56. $f(x) = 4x + 1; g(x) = -4x - 1$

57. $f(x) = 3x + 9; g(x) = 3x + 15$

58. $f(x) = -x - 4; g(x) = x - 4$

59. $f(x) = x + 2; g(x) = \frac{2}{3}x + 2$

60. $f(x) = x - 1; g(x) = 3x - 3$

61. **REASONING** The graph of $f(x) = x + 5$ is a vertical translation 5 units up of the graph of $f(x) = x$. How can you obtain the graph of $f(x) = x + 5$ from the graph of $f(x) = x$ using a horizontal translation?

62. **HOW DO YOU SEE IT?** Match each function with its graph. Explain your reasoning.

- $a(x) = f(-x)$
- $g(x) = f(x - 4)$
- $h(x) = f(x) + 2$
- $k(x) = f(3x)$

63. **REASONING** In Exercises 63–66, find the value of r.

64. $g(x) = f(rx)$

65. $f(x) = 3x - 6$

66. $f(x) = \frac{1}{2}x + 8$

67. **CRITICAL THINKING** When is the graph of $y = f(x) + w$ the same as the graph of $y = f(x + w)$ for linear functions? Explain your reasoning.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons

Solve the formula for the indicated variable.

68. Solve for h.

$$V = \pi r^2 h$$

69. Solve for w.

$$P = 2l + 2w$$

Solve the inequality. Graph the solution, if possible.

70. $|x - 3| \leq 14$

71. $|2x + 4| > 16$

72. $|x + 7| < 25$

73. $-2|x + 1| \geq 18$