Summer Review Packet for Students Entering Calculus (all levels)

Complex Fractions

When simplifying complex fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common denominator of all the denominators in the complex fraction.

Example:

$$\frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} = \frac{-7 - \frac{6}{x+1}}{\frac{5}{x+1}} \cdot \frac{x+1}{x+1} = \frac{-7x - 7 - 6}{5} = \frac{-7x - 13}{5}$$

$$\frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} = \frac{\frac{-2}{x} + \frac{3x}{x-4}}{5 - \frac{1}{x-4}} \cdot \frac{x(x-4)}{x(x-4)} = \frac{-2(x-4) + 3x(x)}{5(x)(x-4) - 1(x)} = \frac{-2x + 8 + 3x^2}{5x^2 - 20x - x} = \frac{3x^2 - 2x + 8}{5x^2 - 21x}$$

Simplify each of the following.

$$1. \frac{\frac{25}{a} - a}{\frac{5+a}{5+a}}$$

$$2. \frac{2 - \frac{4}{x+2}}{5 + \frac{10}{x+2}}$$

$$3. \ \frac{4 - \frac{12}{2x - 3}}{5 + \frac{15}{2x - 3}}$$

4.
$$\frac{\frac{x}{x+1} - \frac{1}{x}}{\frac{x}{x+1} + \frac{1}{x}}$$

$$5. \ \frac{1 - \frac{2x}{3x - 4}}{x + \frac{32}{3x - 4}}$$

Functions

To evaluate a function for a given value, simply plug the value into the function for x.

Recall: $(f \circ g)(x) = f(g(x)) OR f[g(x)]$ read "f of g of x" Means to plug the inside function (in this case g(x)) in for x in the outside function (in this case, f(x)).

Example: Given $f(x) = 2x^2 + 1$ and g(x) = x - 4 find f(g(x)).

$$f(g(x)) = f(x-4)$$

$$= 2(x-4)^{2} + 1$$

$$= 2(x^{2} - 8x + 16) + 1$$

$$= 2x^{2} - 16x + 32 + 1$$

$$f(g(x)) = 2x^{2} - 16x + 33$$

Let f(x) = 2x + 1 and $g(x) = 2x^2 - 1$. Find each.

7.
$$g(-3) =$$
______ 8. $f(t+1) =$ _____

8.
$$f(t+1) =$$

9.
$$f[g(-2)] =$$

10.
$$g[f(m+2)] =$$

9.
$$f[g(-2)] = _____ 10. g[f(m+2)] = _____ 11. \frac{f(x+h)-f(x)}{h} = _____$$

Let $f(x) = \sin x$ Find each exactly.

12.
$$f\left(\frac{\pi}{2}\right) =$$

13.
$$f\left(\frac{2\pi}{3}\right) = \underline{\hspace{1cm}}$$

Let $f(x) = x^2$, g(x) = 2x + 5, and $h(x) = x^2 - 1$. Find each.

14.
$$h[f(-2)] =$$

15.
$$f[g(x-1)] =$$

3

14.
$$h \lceil f(-2) \rceil =$$
 15. $f [g(x-1)] =$ 16. $g [h(x^3)] =$

Find $\frac{f(x+h)-f(x)}{h}$ for the given function f.

17.
$$f(x) = 9x + 3$$

18.
$$f(x) = 5 - 2x$$

Intercepts and Points of Intersection

To find the x-intercepts, let y = 0 in your equation and solve. To find the y-intercepts, let x = 0 in your equation and solve.

Example: $y = x^2 - 2x - 3$

$$\frac{x - \text{int. } (Let \ y = 0)}{0 = x^2 - 2x - 3}$$

$$0 = x^2 - 2x - 3$$

$$0 = (x-3)(x+1)$$

$$x = -1 \text{ or } x = 3$$

$$x-i$$
 ntercepts $(-1,0)$ and $(3,0)$

 $y - \text{int.} (Let \ x = 0)$ $y = 0^{2} - 2(0) - 3$ y = -3

$$y = 0^2 - 2(0) - 3$$

$$y = -3$$

y - intercept (0, -3)

Find the x and y intercepts for each.

19.
$$y = 2x - 5$$

20.
$$y = x^2 + x - 2$$

21.
$$y = x\sqrt{16 - x^2}$$

22.
$$y^2 = x^3 - 4x$$

Use substitution or elimination method to solve the system of equations.

Example:

$$x^2 + y - 16x + 39 = 0$$

$$x^2 - y^2 - 9 = 0$$

Elimination Method

$$2x^2 - 16x + 30 = 0$$

$$x^2 - 8x + 15 = 0$$

$$(x-3)(x-5)=0$$

$$x = 3$$
 and $x = 5$

Plug x=3 and x=5 into one original

$$3^2 - y^2 - 9 = 0 5^2 - y^2 - 9 = 0$$

$$5^2 - y^2 - 9 = 0$$

$$-y^2 = 0 16 = y^2$$

$$16 = y^2$$

$$y = 0$$

$$y = \pm 4$$

Points of Intersection (5,4), (5,-4) and (3,0)

Substitution Method

Solve one equation for one variable.

$$y^2 = -x^2 + 16x - 39$$

$$y^{2} = -x^{2} + 16x - 39$$
 (1st equation solved for y)

$$x^{2} - (-x^{2} + 16x - 39) - 9 = 0$$
 Plug what y^{2} is equal to into second equation.

$$2x^{2} - 16x + 30 = 0$$
 (The rest is the same as $x^{2} - 8x + 15 = 0$ previous example)

$$(x - 3)(x - 5) = 0$$

$$2x^2 - 16x + 30 = 0$$

$$x^2 - 8x + 15 = 0$$

$$(x-3)(x-5)=0$$

$$x = 3 \text{ or } x - 5$$

Find the point(s) of intersection of the graphs for the given equations.

$$23. \qquad \begin{aligned} x+y &= 8 \\ 4x-y &= 7 \end{aligned}$$

$$24. \qquad x^2 + y = 6$$
$$x + y = 4$$

$$x^2 - 4y^2 - 20x - 64y - 172 = 0$$

$$16x^2 + 4y^2 - 320x + 64y + 1600 = 0$$

Interval Notation

26. Complete the table with the appropriate notation or graph.

Solution	Interval Notation	Graph
$-2 < x \le 4$		
	[-1,7)	
		←
		8

Solve each equation. State your answer in BOTH interval notation and graphically.

27.
$$2x-1 \ge 0$$

28.
$$-4 \le 2x - 3 < 4$$

29.
$$\frac{x}{2} - \frac{x}{3} > 5$$

Domain and Range

Find the domain and range of each function. Write your answer in INTERVAL notation.

30.
$$f(x) = x^2 - 5$$

31.
$$f(x) = -\sqrt{x+3}$$

$$32. \quad f(x) = 3\sin x$$

30.
$$f(x) = x^2 - 5$$
 31. $f(x) = -\sqrt{x+3}$ 32. $f(x) = 3\sin x$ 33. $f(x) = \frac{2}{x-1}$

<u>Inverses</u>

To find the inverse of a function, simply switch the x and the y and solve for the new "y" value.

Example:

$$f(x) = \sqrt[3]{x+1}$$
 Rewrite $f(x)$ as y

$$y = \sqrt[3]{x+1}$$
 Switch x and y

$$x = \sqrt[3]{y+1}$$
 Solve for your new y

$$(x)^3 = (\sqrt[3]{y+1})^3$$
 Cube both sides

$$x^3 = y + 1$$
 Simplify

$$y = x^3 - 1$$
 Solve for y

$$f^{-1}(x) = x^3 - 1$$
 Rewrite in inverse notation

Find the inverse for each function.

34.
$$f(x) = 2x + 1$$

35.
$$f(x) = \frac{x^2}{3}$$

Also, recall that to PROVE one function is an inverse of another function, you need to show that: f(g(x)) = g(f(x)) = x

Example:

If: $f(x) = \frac{x-9}{4}$ and g(x) = 4x+9 show f(x) and g(x) are inverses of each other.

$$f(g(x)) = 4\left(\frac{x-9}{4}\right) + 9$$

$$= x - 9 + 9$$

$$= x$$

$$= x$$

$$g(f(x)) = \frac{(4x+9)-9}{4}$$

$$= \frac{4x+9-9}{4}$$

$$= \frac{4x}{4}$$

$$= x$$

f(g(x)) = g(f(x)) = x therefore they are inverses of each other.

Prove f and g are inverses of each other.

36.
$$f(x) = \frac{x^3}{2}$$
 $g(x) = \sqrt[3]{2x}$

37.
$$f(x) = 9 - x^2, x \ge 0$$
 $g(x) = \sqrt{9 - x}$

Equation of a line

Slope intercept form: y = mx + b Vertical line: x = c (slope is undefined)

Point-slope form: $y - y_1 = m(x - x_1)$ Horizontal line: y = c (slope is 0)

38. Use slope-intercept form to find the equation of the line having a slope of 3 and a y-intercept of 5.

39. Determine the equation of a line passing through the point (5, -3) with an undefined slope.

40. Determine the equation of a line passing through the point (-4, 2) with a slope of 0.

41. Use point-slope form to find the equation of the line passing through the point (0, 5) with a slope of 2/3.

42. Find the equation of a line passing through the point (2, 8) and parallel to the line $y = \frac{5}{6}x - 1$.

43. Find the equation of a line perpendicular to the y- axis passing through the point (4, 7).

44. Find the equation of a line passing through the points (-3, 6) and (1, 2).

45. Find the equation of a line with an x-intercept (2, 0) and a y-intercept (0, 3).

Draw and label the Unit Circle in the space below:

Continue with problem # 59.

Radian and Degree Measure

Use $\frac{180^{\circ}}{\pi radians}$ to get rid of radians and	Use $\frac{\pi radians}{180^{\circ}}$ to get rid of degrees and
convert to degrees.	convert to radians.

- 59. Convert to degrees:

c. 2.63 radians

- 60. Convert to radians: a. 45°
- b. -17°

c. 237°

Angles in Standard Position

- 61. Sketch the angle in standard position.
- a. $\frac{11\pi}{6}$

b. 230°

c. $-\frac{5\pi}{3}$

d. 1.8 radians

Reference Triangles

- 62. Sketch the angle in standard position. Draw the reference triangle and label the sides, if possible.
- a. $\frac{2}{3}\pi$

b. 225°

c. $-\frac{\pi}{4}$

d. 30°

Unit Circle

You can determine the sine or cosine of a quadrantal angle by using the unit circle. The x-coordinate of the circle is the cosine and the y-coordinate is the sine of the angle.

Example: $\sin 90^{\circ} = 1$

 $\cos\frac{\pi}{2} = 0$

63. a.) $\sin 180^{\circ}$

b.) cos 270°

- c.) $\sin(-90^{\circ})$
- d.) $\sin \pi$

e.) cos 360°

f.) $\cos(-\pi)$

Graphing Trig Functions

 $y = \sin x$ and $y = \cos x$ have a period of 2π and an amplitude of 1. Use the parent graphs above to help you sketch a graph of the functions below. For $f(x) = A\sin(Bx + C) + K$, A = amplitude, $\frac{2\pi}{B} = \text{period}$,

 $\frac{C}{B}$ = phase shift (positive C/B shift left, negative C/B shift right) and K = vertical shift.

Graph two complete periods of the function.

$$64. \quad f(x) = 5\sin x$$

65.
$$f(x) = \sin 2x$$

$$66. \ f(x) = -\cos\left(x - \frac{\pi}{4}\right)$$

67.
$$f(x) = \cos x - 3$$

Trigonometric Equations:

Solve each of the equations for $0 \le x < 2\pi$. Isolate the variable, sketch a reference triangle, find all the solutions within the given domain, $0 \le x < 2\pi$. Remember to double the domain when solving for a double angle. Use trig identities, if needed, to rewrite the trig functions. (See formula sheet at the end of the packet.)

68.
$$\sin x = -\frac{1}{2}$$

69.
$$2\cos x = \sqrt{3}$$

$$70. \cos 2x = \frac{1}{\sqrt{2}}$$

71.
$$\sin^2 x = \frac{1}{2}$$

72.
$$\sin 2x = -\frac{\sqrt{3}}{2}$$

73.
$$2\cos^2 x - 1 - \cos x = 0$$

74.
$$4\cos^2 x - 3 = 0$$

75.
$$\sin^2 x + \cos 2x - \cos x = 0$$

Inverse Trigonometric Functions:

Recall: Inverse Trig Functions can be written in one of ways:

$$\arcsin(x)$$

$$\sin^{-1}(x)$$

Inverse trig functions are defined only in the quadrants as indicated below due to their restricted domains.

Example:

Express the value of "y" in radians.

 $y = \arctan \frac{-1}{\sqrt{3}}$

Draw a reference triangle.

This means the reference angle is 30° or $\frac{\pi}{6}$. So, $y = -\frac{\pi}{6}$ so that it falls in the interval from

15

$$\frac{-\pi}{2} < y < \frac{\pi}{2}$$

$$\frac{-\pi}{2} < y < \frac{\pi}{2}$$
 Answer: $y = -\frac{\pi}{6}$

For each of the following, express the value for "y" in radians.

76.
$$y = \arcsin \frac{-\sqrt{3}}{2}$$

77.
$$y = \arccos(-1)$$

78.
$$y = \arctan(-1)$$

Example: Find the value without a calculator.

$$\cos\left(\arctan\frac{5}{6}\right)$$

Draw the reference triangle in the correct quadrant first.

Find the missing side using Pythagorean Thm.

Find the ratio of the cosine of the reference triangle.

$$\cos\theta = \frac{6}{\sqrt{61}}$$

For each of the following give the value without a calculator.

79.
$$\tan\left(\arccos\frac{2}{3}\right)$$

80.
$$\sec\left(\sin^{-1}\frac{12}{13}\right)$$

81.
$$\sin\left(\arctan\frac{12}{5}\right)$$

82.
$$\sin\left(\sin^{-1}\frac{7}{8}\right)$$

Circles and Ellipses

$$r^2 = (x-h)^2 + (y-k)^2$$

For a circle centered at the origin, the equation is $x^2 + y^2 = r^2$, where r is the radius of the circle.

For an ellipse centered at the origin, the equation is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a is the distance from the center to the

ellipse along the x-axis and b is the distance from the center to the ellipse along the y-axis. If the larger number is under the y^2 term, the ellipse is elongated along the y-axis. For our purposes in Calculus, you will not need to locate the foci.

Graph the circles and ellipses below:

83.
$$x^2 + y^2 = 16$$

84.
$$x^2 + y^2 = 5$$

$$85. \ \frac{x^2}{1} + \frac{y^2}{9} = 1$$

$$86. \ \frac{x^2}{16} + \frac{y^2}{4} = 1$$

