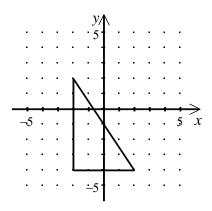
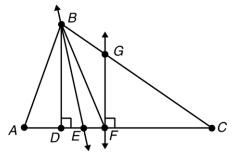
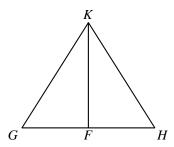

1. Given: \overrightarrow{EF} is the perpendicular bisector of \overrightarrow{KM} . Name three things that you can conclude.



- 2. A point is equidistant from points A(2, 1), B(2, -4), and C(-3, 1). Find its coordinates.
- 3. If \overrightarrow{KF} is the perpendicular bisector of \overline{GH} , then $\angle KGF \cong$


- [A] *∡KHF*

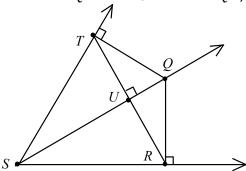
- [B] $\angle KFH$ [C] \overline{KF} [D] $\angle FKG$
- 4. For the triangle, find the coordinates of the point of concurrency of the perpendicular bisectors of the sides.


- [A] (-1,0)
- [B] (0,-1)
- [C] (1,-1)
- [D] (1,-2)
- 5. The circumcenter of a triangle is equidistant from the three _____ of the triangle.

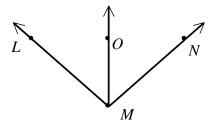
6. Refer to the figure below. Given: $\overline{AF}\cong\overline{FC}$, $\angle ABE\cong \angle EBC$. Which line is a perpendicular bisector in $\triangle ABC$?

7. The vertices of a triangle are A(4, -3), B(-6, -3), and C(-1, -8). Find its circumcenter.

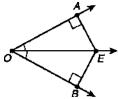
8. In the two-person tent shown below, \overrightarrow{KF} is the perpendicular bisector of \overline{GH} . Then $\angle KGF \cong$ ______.

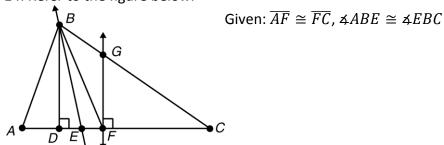

[A] *∡KHF*

[B] *∡KFH*


[C] *₄KF*

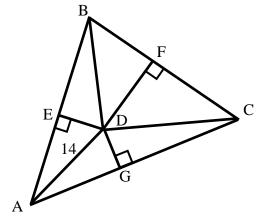
[D] *¥FKG*


10. Given: \overrightarrow{SQ} bisects $\angle RST$. Find QR, if UT=15 and UQ=36. (not drawn to scale)

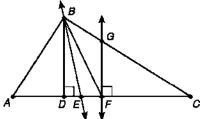

11. In the figure (not drawn to scale), \overrightarrow{MO} bisects $\angle LMN$, $m \angle LMO = 6x^2 - 22x - 12$ and $m \angle NMO = x^2 + 6x$. Solve for x and find $m \angle LMN$.

12. \overrightarrow{OE} bisects $\angle BOA$, $\overrightarrow{EA} \perp \overrightarrow{OA}$, and $\overrightarrow{EB} \perp \overrightarrow{OB}$. Which statement is NOT true?

- $[A] \not AEO \cong \not ABEO$
- $[B] \not AOE \cong \not EAO$
- [C] $\overline{AE} \cong \overline{BE}$
- $[\mathsf{D}] \ \overline{\mathit{OA}} \cong \overline{\mathit{OB}}$
- 13. The angle bisectors of a triangle are concurrent at a point called the _____.
- 14. Refer to the figure below.

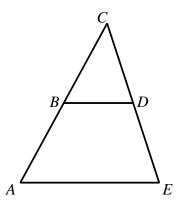

A median of $\triangle ABC$ is .

- [A] \overrightarrow{GF}
- [B] \overrightarrow{BE}
- [C] \overline{BD}
- [D] \overline{BF}

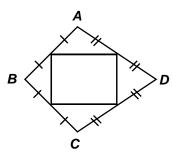

15. The perpendicular bisectors of $\triangle ABC$ meet at point D.(Round to the nearest tenth) AC = 19.6 AD = 14

- b) Find DC.
- c) Find DG.

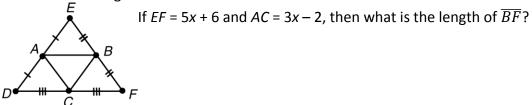
- 16. The medians of a triangle are concurrent. Their common point is called what?
- 17. If \overline{QR} is an altitude of ΔPQR , what type of triangle is ΔPQR ?
- 18. Refer to figure below.

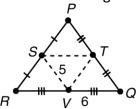


Given: $\overline{AF} \cong \overline{FC}$, $\angle ABE \cong \angle EBC$

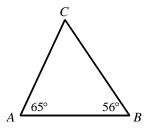

An altitude of $\triangle ABC$ is _____.

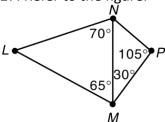
- [A] \overline{BD}
- [B] \overrightarrow{GF}
- [C] \overline{BF}
- [D] \overrightarrow{BE}
- 19. In a triangle, a segment connecting the midpoints of two sides of the triangle is called a _____.
- [A] vertex [B] centroid [C] midsegment [D] shortcut
- 20. The altitudes of a triangle are concurrent. What is the name of their common point?


21. Solve for x given BD = 3x + 2 and AE = 4x + 8. Assume B is the midpoint of \overline{AC} and D is the midpoint of \overline{CE} .


22. Find the area of the rectangle if AC = 12 and BD = 25.

23. Refer to the figure below.


24. For the triangle shown, VS = 5 and VQ = 6. Then PQ =_____.

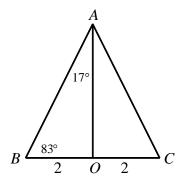

- [A] 11
- [B] 5
- [C] 10
- [D] 12

25. The coordinates of the midpoints of the sides of a triangle are L(0, 1), M(4, 0), and N(2, -2). Find the coordinates of the vertices of the triangle.

26. Identify the longest side of $\triangle ABC$.

27. Refer to the figure.

The longest side is


[A] \overline{NM}

[B] \overline{LN}

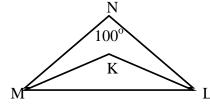
[C] \overline{MP}

[D] \overline{ML}

28. Which is the appropriate symbol to place in the blank? (not drawn to scale) AB __ AC

[A] >

[B] =


[C] < [D] not enough information

29. Using the Triangle Inequality Theorem, solve for all possible values of *x*.

- 30. Which side lengths allow you to construct a triangle?
- [A] 2, 3, and 8
- [B] 6, 8, and 10
- [C] 4, 1, and 9
- [D] 7, 2, and 2
- 31. Two sides of a triangle have lengths 8 and 11. What are the possible lengths of the third side x?
- 32. Two sides of a triangle have lengths 7 and 13. The third side has a length that is ______.
- [A] < 20 and > 6
- [B] < 6
- [C] > 6 and < 13
- [D] > 20
- 33. Which of these lengths could be the sides of a triangle?
- [A] 13 cm, 19 cm, 4 cm
- [B] 19 cm, 9 cm, 11 cm
- [C] 19 cm, 13 cm, 5 cm
- [D] 9 cm, 19 cm, 10 cm
- 34. In the diagram, \overline{MK} and \overline{LK} are angle bisectors of ΔMNL and $m \not \Delta MNL = 100^\circ$.

Name	Date	
	Chapter 5 Review	
[1] Any three of the	[8] [A]	[21] 2
following: $\overline{EF} \perp \overline{KM}$;	[10] 39	[22] 75
∡ELM, ∡MLF, ∡FLK,	11 x = 6	[23] 28
and $\angle KLE$ are right $\angle s$;	$m \not\perp LMN = 144^{\circ}$	[24] [C]
Lis the midpoint of \overline{KM} ;	[12] [B]	[25](-2,-1),(2,3),(6,-3)
$\overline{KL} \cong \overline{LM}; EK = EM;$	[13] Incenter	[26] <u>CB</u>
$\frac{FK = FM}{(1 - 3)}$	[14] [D]	[27] [D]
$[2]\left(-\frac{1}{2},-\frac{3}{2}\right)$	[15] a) 14 b) 14 c) 10	[28] [C]
[3] [A]	[16] Centroid	[29] $x > \frac{3}{4}$
[4] [B]	[17] A right triangle	[30] [B]
[5] Vertices	[18] [A]	[31] 3 < x < 19
[6] \overrightarrow{GF}	[19] [C]	[32] [A]

[20] Orthocenter

[33] [B] [34] 140°

[7] (-1, -3)