Chapter Test A For use after the chapter "Rational Functions"

Tell whether x and y show direct variation, inverse variation, or neither.

1.
$$x + y = \frac{1}{x}$$

2.
$$\frac{1}{x} = y$$

Write an equation relating x, y, and z given that z varies jointly with x and y. Then find z when x = 2 and y = 3.

3.
$$x = 3, y = -3, z = 18$$

4.
$$x = -2, y = 5, z = 30$$

Graph the function. State the domain and range.

5.
$$y = \frac{4}{x}$$

6.
$$y = \frac{2}{x-1} + 1$$

7. An apartment renter must pay an initial \$250 security deposit, and a monthly rent of \$500. Write and graph an equation that gives the renter's average rent per month as a function of the number of months rented. After how many months will the average rent be \$550?

8. The value M (in dollars) of a laptop computer t years after it was purchased new can be estimated using the function
M(t) = 800/t + 100 where t≥ 1. Estimate the laptop's value 4 years after purchase. What does the value of the laptop approach as time passes?

Answers

- 1. _____
- 2.
- 3. _____
 - ____
- 4. _____
 - ____
- 5. _____
 - ____
- 6. _____
- 7. _____
- ____

CHAPTER **5**

Chapter Test A continued For use after the chapter "Rational Functions"

Graph the function.

9.
$$y = \frac{4x}{2x^2}$$

10.
$$y = \frac{2x-1}{6x+3}$$

Simplify the rational expression, if possible.

11.
$$\frac{x^2 - x - 12}{x^2 + 5x + 6}$$

12.
$$\frac{x^2 - 9}{x^2 + x - 12}$$

Perform the indicated operation and simplify.

13.
$$\frac{3x^2y^2}{7xy^4} \cdot \frac{28xy}{6x}$$

14.
$$\frac{x^2 + 7x + 10}{2(x^2 - 4)} \cdot \frac{4}{(x + 5)^2}$$

Find the least common multiple of the polynomials.

15.
$$5x$$
 and $4x^2 - 4$

16.
$$x^2 - 5x$$
 and $x^3 + 3x^2 - 10x$

Perform the indicated operation and simplify.

17.
$$\frac{2}{3x^2} + \frac{7}{4x}$$

18.
$$\frac{x}{x^2-4} + \frac{3x-5}{x^2+4x+4}$$

Solve the equation by cross multiplying.

19.
$$\frac{x}{2x-2} = \frac{3}{x-1}$$

20.
$$\frac{x+3}{6} = \frac{x+1}{x-4}$$

Solve the equation by using the LCD.

21.
$$\frac{x}{2(x-2)} + \frac{x-6}{x-2} = \frac{x}{8}$$

22.
$$\frac{x}{2(x-3)} - \frac{2x}{x+4} = \frac{x}{4(x-3)}$$

23. Find the average rate of change of
$$f(x) = 2^{x+1} - 4$$
 over the interval [3, 6].

Answers

65

Chapter Test B

For use after the chapter "Rational Functions"

The variables x and y vary inversely. Use the given values to write an equation relating x and y. Then find y when x = 2.

1.
$$x = 3, y = 4$$

2.
$$x = 4, y = -2$$

Write an equation relating x, y, and z given that z varies jointly with x and y. Then find z when x = 2 and y = 3.

3.
$$x = 5, y = -3, z = 15$$

4.
$$x = -2, y = -2, z = -16$$

Graph the function. State the domain and range.

5.
$$y = \frac{-2}{x}$$

6.
$$y = \frac{2}{x+1} - 1$$

7. A used car can be purchased by paying \$1000 down at the time of purchase, and then paying \$200 per month for 25 months. Write and graph an equation that gives the average cost per month as a function of the number of months of ownership. After how many months will the average cost be \$325?

8. The value M (in dollars) of a watercraft t years after it was purchased new can be estimated using the function $M(t) = \frac{5000}{t} + 600$ where $t \ge 1$. Estimate the watercraft's value 4 years after purchase. What does the value of the watercraft approach as time passes?

Answers

CHAPTER 5

Chapter Test B continued For use after the chapter "Rational Functions"

Graph the function.

9.
$$y = \frac{3x^2}{2x+1}$$

10.
$$y = \frac{4x+1}{8x-3}$$

Simplify the rational expression, if possible.

11.
$$\frac{x^2 + 7x + 12}{x^2 - 7x + 12}$$

12.
$$\frac{x^2 + 5x}{x^2 + 6x + 5}$$

Perform the indicated operation and simplify.

13.
$$\frac{5x^2y}{4y^3} \cdot \frac{12x^2y^2}{30x^3}$$

14.
$$\frac{2x^3}{7xy^2} \div \frac{6xy^2}{14y^3}$$

Find the least common multiple of the polynomials.

15.
$$x^2 + 4x + 3$$
 and $x^2 - 9$

16.
$$x^2 - 4x$$
 and $x^3 - 8x^2 + 16x$

Perform the indicated operation and simplify.

17.
$$\frac{7}{5x} - \frac{4}{3x}$$

18.
$$\frac{2x}{x^2 - 1} + \frac{2x - 3}{x^2 + 5x + 4}$$

Solve the equation by cross multiplying.

19.
$$\frac{x+4}{3x+5} = \frac{2x-1}{3x+1}$$

20.
$$\frac{x^2+1}{3-3x}=\frac{x+2}{3}$$

Solve the equation by using the LCD.

21.
$$\frac{3+x}{2} + 2x = \frac{6x+1}{4-x}$$

22.
$$\frac{x+5}{2x+3} + \frac{x+1}{-2x} = -1$$

23. Determine whether the function
$$g(x) = x^5 - x^3 + 2x$$
 is even, odd, or neither.

Answers

67

Chapter Test C For use after the chapter "Rational Functions"

Write an equation for the given relationship.

- **1.** z varies directly with x and inversely with y.
- **2.** r varies jointly with q, s, and t.
- **3.** w varies directly with x and inversely with y and z.

Graph the function. State the domain and range.

4.
$$y = \frac{-3}{x}$$

5. $y = \frac{2x+3}{x-2}$

6. A company hires a computer programmer with an initial signing bonus of \$1000.

Additionally, the programmer is paid \$2500 per month in salary.

Write and graph an equation that gives the company's average cost per month for the employee as a function of the employee's number of months of employment.

After how many months will the average cost per month be \$2750?

7. A hockey goalie blocks 15 of the first 17 shots against him. The table shows how the goalie's block percentage changes if he blocks *x* consecutive shots after the first 17 shots. Write a rational function for the block percentage in terms of *x*. How many consecutive blocks must the goalie make to reach a block percentage of 95%?

x	Total blocked	Total # of shots	Block percentage
0	15	17	0.88
4	19	21	0.90
8	23	25	0.92
x	x + 15	x + 17	?

- 1. _____
- 2.
- 3.
- 4. _____
 - ____
- ____
- 6. _____
- ____

CHAPTER

Chapter Test C continued For use after the chapter "Rational Functions"

Graph the function.

8.
$$y = \frac{2x-1}{-x+3}$$

9.
$$y = \frac{x}{2x^2}$$

Simplify the rational expression, if possible.

10.
$$\frac{x^3-27}{x-3}$$

11.
$$\frac{x^3 - 3x^2 - 25x - 21}{x^2 - 6x - 7}$$

Perform the indicated operation and simplify.

12.
$$\frac{4x^2y}{3y^2} \div \frac{16x^4}{9x^3y^2}$$

13.
$$\frac{x^2 - 2x - 3}{2x - 4} \cdot \frac{x^2 + 3x - 10}{x^2 + 6x + 5}$$

14.
$$\frac{4}{3x} - \frac{1}{2x^2}$$

15.
$$\frac{4x}{x^2-9} + \frac{3x-1}{x^2+5x+6}$$

16. Simplify the complex fraction
$$\frac{\frac{2}{x}-1}{3+\frac{x}{2}}$$
.

Solve the equation by cross multiplying.

17.
$$\frac{4}{3x-1} = \frac{5}{2x+4}$$

Sopyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved

18.
$$\frac{x+3}{x^2-5} = \frac{4}{x-2}$$

Solve the equation by using the LCD.

19.
$$\frac{x+1}{5} = \frac{3}{2x} + \frac{2x+2}{16}$$

20.
$$\frac{x+4}{3} - \frac{2}{x} = x - 1$$

20. Compare the properties of the two functions and the key characteristics of their graphs. Include domain, range, asymptotes, end behavior and general appearance of the graph.

Function 1:
$$y = x^2$$

Function 2:
$$y = -(x - 2)^2 + 1$$

Answers

Answers for Rational Functions

Quiz 1

1.
$$y = \frac{14}{x}$$
; -7 **2.** $y = -\frac{24}{x}$; 12 **3.** $y = -\frac{6}{x}$; 3

4.
$$y = \frac{9}{x}$$
; -4.5

10.
$$z = 4xy$$
; 192

Quiz 2

1.
$$\frac{2(x-5)}{x(x+4)}$$
 2. $\frac{x-3}{x+2}$ **3.** $\frac{(x+2)(x+3)}{(x-5)(x+4)}$

4.
$$\frac{2x}{x^2 - 9}$$
 5. $\frac{x + 20}{x^2 - 2x - 8}$ **6.** $\frac{8x + 28}{x^2 - 64}$

7. 0, 6 **8.** 2 **9.** -2 **10.**
$$\frac{4}{3x}$$
 11. $x < 0$

12. even

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved

Chapter Test A

1. neither **2.** inverse variation

3.
$$z = -2xy$$
; -12 **4.** $z = -3xy$; -18

; domain: all real numbers except 0, range: all real numbers except 0

domain: all real numbers except 1, range: all real numbers except 1

7.
$$R(m) = \frac{250}{m} + 500, m \ge 1;$$

8. \$300; \$100

11.
$$\frac{x-4}{x+2}$$
 12. $\frac{x+3}{x+4}$ **13.** $\frac{2x}{y}$

14.
$$\frac{2}{(x-2)(x+5)}$$
 15. $20x(x-1)(x+1)$

16.
$$x(x-5)(x+5)(x-2)$$
 17. $\frac{21x+8}{12x^2}$

18.
$$\frac{4x^2 - 9x + 10}{(x - 2)(x + 2)^2}$$
 19. 6 **20.** -2, 9 **21.** 6, 8

22. 0, 4 **23.**
$$\frac{122}{3}$$

Chapter Test B

1.
$$y = \frac{12}{x}$$
; 6 **2.** $y = -\frac{8}{x}$; -4 **3.** $z = -xy$; -6

4.
$$z = -4xy$$
; -24

; domain: all real numbers except 0, range: all real numbers except 0

domain: all real numbers except -1, range: all real numbers except -1

8 months

8. \$1850; \$600

10.

- **11.** not possible **12.** $\frac{x}{x+1}$ **13.** $\frac{x}{2}$ **14.** $\frac{2x}{3y}$
- **15.** (x + 1)(x + 3)(x 3) **16.** $x(x 4)^2$
- **17.** $\frac{1}{15x}$ **18.** $\frac{4x^2 + 3x + 3}{(x^2 1)(x + 4)}$ **19.** -1, 3
- **20.** $-1, \frac{1}{2}$ **21.** -1, 2 **22.** $-3, \frac{1}{4}$ **23.** odd

Chapter Test C

1.
$$z = \frac{ax}{y}$$
 2. $r = aqst$ **3.** $w = \frac{ax}{yz}$

; domain: all real numbers except 0, range: all real numbers except 0

domain: all real numbers except 2, range: all real numbers except 2

6.
$$C(m) = \frac{1000}{m} + 2500, m \ge 1;$$

7.
$$f(x) = \frac{x+15}{x+17}$$
; 38 consecutive blocks

9.

- **10.** $x^2 + 3x + 9$ **11.** x + 3 **12.** $\frac{3xy}{4}$ **13.** $\frac{x 3}{2}$
- **14.** $\frac{8x-3}{6x^2}$ **15.** $\frac{7x^2-2x+3}{(x^2-9)(x+2)}$ **16.** $\frac{4-2x}{x^2+6x}$
- **17.** 3 **18.** $-2, \frac{7}{3}$ **19.** -5, 4 **20.** $2, \frac{3}{2}$

21. The domains are the same, the ranges are $y \ge 0$ for Function 1 and $y \le 1$ for Function 2. Neither function has any asymptotes. End behavior: Function 1 rises on both sides, Function 2 falls on both sides. The graphs of both functions have the same shape, but the graph of Function 2 is the graph of Function 1 moved 2 units to the right, up 1 unit, and reflected over the *x*-axis.

Standardized Test

- **1.** A **2.** C **3.** B **4.** C **5.** C **6.** A **7.** D **8.** B
- **9.** A **10.** C **11.** D **12.** D **13.** 3
- **14.** a. y = 175 + 25x b. $y = \frac{175}{x} + 25$; month 12
- **15. a.** surface area = $2\pi r^2 + 2\pi rh$, volume = $\pi r^2 h$ **b.** surface area = $2\pi r^2 + \frac{710}{r}$
- **c.** 3.8 cm **d.** about \$.28/can

SAT/ACT Chapter Test

- **1.** C **2.** D **3.** C **4.** B **5.** B **6.** A **7.** C
- **8.** A **9.** C **10.** D **11.** A **12.** B **13.** B
- **14.** $\frac{4}{9}$ **15.** $\frac{1}{4}$ **16.** 5

Alternative Assessment

1. Complete answers should include: identification of the *x*-intercepts $\left(-\frac{1}{2} \text{ and } 5\right)$, the vertical asymptotes (x=-2, x=0, and x=1), and the horizontal asymptote (y=0); an explanation that the *x*-intercepts are the real zeros of the polynomial in the numerator; an explanation that the vertical asymptotes exist at the real zeros of the polynomial in the denominator; an